Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
Adv Biol (Weinh) ; 5(12): e2101113, 2021 12.
Article in English | MEDLINE | ID: covidwho-1487432

ABSTRACT

Following the entry into the host cell, SARS-CoV-2 replication is mediated by the replication transcription complex (RTC) assembled through a number of nonstructural proteins (Nsps). A monomeric form of Nsp9 is particularly important for RTC assembly and function. In the present study, 136 unique nanobodies targeting Nsp9 are generated. Several nanobodies belonging to different B-cell lineages are expressed, purified, and characterized. Results from immunoassays applied to purified Nsp9 and neat saliva from coronavirus disease (COVID-19) patients show that these nanobodies effectively and specifically recognize both recombinant and endogenous Nsp9. Nuclear magnetic resonance analyses supported by molecular dynamics reveal a composite Nsp9 oligomerization pattern and demonstrate that both nanobodies stabilize the tetrameric form of wild-type Nsp9 also identifying the epitopes on the tetrameric assembly. These results can have important implications in the potential use of these nanobodies to combat viral replication.


Subject(s)
COVID-19 , Single-Domain Antibodies , Antiviral Agents , Humans , Magnetic Resonance Spectroscopy , RNA-Binding Proteins , SARS-CoV-2 , Viral Nonstructural Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL